Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BR1085). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Beintema, J. (1937). Z. Kristallogr. A97, 300-322.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Diamond, R. (1988). Acta Cryst. A44, 211-216.
Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Favas, M. C. \& Kepert, D. L. (1981). Prog. Inorg. Chem. 28, 309-367.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 35723583.

Ghosh, B. P. \& Nag, K. (1987). J. Solid State Chem. 68, 118-123.
ICDD (1993). Powder Diffraction File, Set 43. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA.
King, R. B. (1970). J. Am. Chem. Soc. 92, 6460-6466.
Maciček, J. (1993). DENSE. A Computer Program for the Evaluation and Presentation of Dense Atomic Planes. Unpublished.
Maciček, J. \& Todorov, T. (1992). Acta Cryst. C48, 599-603.
Matveeva, R. G., Ilyukhin, V. V., Varfolomeyev M. B. \& Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 222, 99-101.

Noddack, I. \& Noddack, W. (1929). Z. Anorg. Allg. Chem. 181, 1-37.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Picard, J. P., Besse, J. P., Chevalier, R. \& Gasperin, M. (1987). J. Solid State Chem. 69, 380-384.
Robertson, B. E. (1977). Inorg. Chem. 16, 2735-2742.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen. Germany.
Smith, W. T. \& Maxwell, G. E. (1951). J. Am. Chem. Soc. 73, 658660.

Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: MacMillan.
Tchernikova, N. Yu., Lavut, E. E. \& Zorkii, P. M. (1979). Coord. Chem. (Russ.) 5, 1265-1270.
Todorov, T. \& Maciček, J. (1992). ECM-14, Enschede, Book of Abstracts, p. 137.
Varfolomeyev, M. V., Chupakhin, I. P. \& Plyuschtev, V. E. (1969). Kristallografia, 14, 1065-1066.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wilke-Dorfurt, E. \& Gunzert, T. (1933). Z. Anorg. Allg. Chem. 215, 369-387.

Acta Cryst. (1995). C51, 1038-1040

## $\mathrm{Na}_{2} \mathrm{O}_{\mathbf{2}} . \mathbf{8 H}_{\mathbf{2}} \mathrm{O} \dagger$

Matthias Grehl, Roland Fröhlich and Sven Thiele<br>Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany

(Received 31 January 1994; accepted 28 November 1994)

## Abstract

The structure of sodium peroxide octahydrate has been determined from single-crystal X-ray data and contains $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\star}^{\dagger}$ octahedra, forming chains by two different types of edge-sharing. The chains are connected by the peroxide ion via hydrogen bonding.

## Comment

As a by-product of an oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$, we obtained colourless crystals. The composition $\mathrm{Na}_{2} \mathrm{O}_{2} .8 \mathrm{H}_{2} \mathrm{O}$ was verified by X-ray analysis. The first crystallographic studies of this compound were reported in 1939, giving a cell, from film data, of the same volume and space group as reported here, but with slightly different cell dimensions (Kotov, 1939). The structure of $\mathrm{Na}_{2} \mathrm{O}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ contains slightly distorted $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)$ t octahedra which are linked by their edges $\left[O(1)-O\left(1^{\prime}\right)\right.$ and $\left.O(4)-O\left(4^{\prime}\right)\right]$ to form staggered chains, as shown in Fig. 1.

The $\mathrm{Na}-\mathrm{O}$ distances are in the range $2.371(1)-$ 2.512 (1) $\AA$. The $\mathrm{Na} \cdots \mathrm{Na}$ distance within two $\mathrm{O}(1)-$ $\mathrm{O}\left(1^{\prime}\right)$ linked $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right) \ddagger$ octahedra is $3.637(1) \AA$. This
$\dagger$ Dedicated to Mr R. M. Schulze on the occasion of his 65th birthday.


Fig. 1. Hydrogen-bonding scheme with numbering of the atoms.
distance is $0.106 \AA$ longer than the interatomic $\mathrm{Na} \cdot \cdots \mathrm{Na}$ distance within two $\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)$ edge-sharing octahedra. The distance between the O atoms of each peroxide group is 1.499 (2) $\AA$, which is in good agreement with published data (Olovsson \& Templeton, 1960; Busing \& Levy, 1965). The peroxide anion is fixed by hydrogen bonds to the water molecules between the $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{d}$ chains. The shortest $\mathrm{H} \cdots \mathrm{O}$ distance is 1.63 (2) $\AA$, the next 1.79 (2) $\AA$. There are also weak hydrogen-bonding interactions between the water molecules of two different $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)+$ chains (Table 2). The other $\mathrm{H} \cdots \mathrm{O}$ distances do not indicate any hydrogen bonding. A comparison with the structures of alkaline earth peroxide octahydrates (Vannerberg, 1959) shows similar bonding schemes between the peroxide anions and the water molecules. Each cation is surrounded by eight water molecules in the case of $\mathrm{Sr}_{2} \mathrm{O}_{2} .8 \mathrm{H}_{2} \mathrm{O}$, and forms isolated square Archimedean antiprisms in contrast to the $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{d}{ }^{+}$chains of the title compound.


Fig. 2. View of the cell down $\mathbf{b}$.

Absorption correction:

## none

1014 measured reflections
953 independent reflections
815 observed reflections
$[I \geq 2 \sigma(I)]$
$R_{\text {int }}=0.0108$
$\theta_{\text {max }}=26.33^{\circ}$

## Refinement

Refinement on $F^{2}$
$R(F)=0.0241$
$w R\left(F^{2}\right)=0.0700$
$S=1.208$
953 reflections
88 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}\right.$ $+0.44 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

Standard reflections:
3 monitored every 120 min for intensity
2 monitored every 250 reflections for orientation intensity decay: within statistical fluctuation

$$
\begin{aligned}
& \Delta \rho_{\max }=0.159 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.136 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: }
\end{aligned}
$$

$$
\begin{aligned}
F_{c}^{*}= & k F_{c}[1+(0.001 \chi \\
& \left.\left.\times F_{c}^{2} \lambda^{3} / \sin 2 \theta\right)\right]^{-1 / 4}
\end{aligned}
$$

Extinction coefficient: $\chi=0.029$ (2)
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$
$U_{\text {iso }}$ for H atoms; $U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$ for others.

|  |  | $y$ | $z$ | $U_{\text {iso }} / U_{\text {eq }}$ |
| :--- | :--- | :---: | :---: | :---: |
| Na | $0.30029(4)$ | $-0.00453(8)$ | $0.06811(5)$ | $0.028(1)$ |
| O | $0.4795(1)$ | $0.4837(2)$ | $0.2990(1)$ | $0.029(1)$ |
| $\mathrm{O}(1)$ | $0.1429(1)$ | $0.1869(2)$ | $0.0073(1)$ | $0.032(1)$ |
| $\mathrm{O}(2)$ | $0.3852(1)$ | $0.1309(2)$ | $0.2880(1)$ | $0.029(1)$ |
| $\mathrm{O}(3)$ | $0.4605(1)$ | $-0.1637(2)$ | $0.0833(1)$ | $0.031(1)$ |
| $\mathrm{O}(4)$ | $0.2840(1)$ | $-0.3415(2)$ | $0.1500(1)$ | $0.030(1)$ |
| $\mathrm{H}(11)$ | $0.125(2)$ | $0.215(4)$ | $0.059(2)$ | $0.064(7)$ |
| $\mathrm{H}(12)$ | $0.088(2)$ | $0.130(3)$ | $-0.060(2)$ | $0.055(6)$ |
| $\mathrm{H}(21)$ | $0.415(2)$ | $0.240(4)$ | $0.289(2)$ | $0.053(6)$ |
| $\mathrm{H}(22)$ | $0.432(2)$ | $0.040(3)$ | $0.323(2)$ | $0.044(5)$ |
| $\mathrm{H}(31)$ | $0.481(2)$ | $-0.296(4)$ | $0.125(2)$ | $0.064(6)$ |
| $\mathrm{H}(32)$ | $0.442(2)$ | $-0.181(3)$ | $0.006(2)$ | $0.051(6)$ |
| $\mathrm{H}(41)$ | $0.249(2)$ | $-0.356(3)$ | $0.180(2)$ | $0.046(6)$ |
| $\mathrm{H}(42)$ | $0.344(2)$ | $-0.404(3)$ | $0.200(2)$ | $0.056(6)$ |

Table 2. Selected geometric parameters $\left(\AA^{\AA},^{\circ}\right)$

## Experimental

Crystal data
$\mathrm{Na}_{2} \mathrm{O}_{2} .8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=222.10$
Monoclinic
C2/c
$a=14.351$ (3) $\AA$
$b=6.468(1) \AA$
$c=11.498(2) \AA$
$\beta=118.42(1)^{\circ}$
$V=938.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=11.08-18.56^{\circ}$
$\mu=0.242 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$
Colourless

$h=-17 \rightarrow 0$
$k=0 \rightarrow 8$
$l=-12 \rightarrow 14$

Hydrogen-bonding geometry

| $D-\mathrm{H} \cdots A$ | $\mathrm{H} \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :---: | :---: |
| $\mathrm{O}\left(1^{\text {iv }}\right)-\mathrm{H}\left(12^{\mathrm{iv}}\right) \cdots \mathrm{O}$ | $1.79(2)$ | $178(2)$ |
| $\mathrm{O}(2)-\mathrm{H}(21) \cdots \mathrm{O}$ | $1.80(2)$ | $177(2)$ |
| $\mathrm{O}\left(3^{\mathrm{v}}\right)-\mathrm{H}\left(31^{\mathrm{v}}\right) \cdots \mathrm{O}$ | $1.63(2)$ | $177(2)$ |
| $\mathrm{O}\left(3^{\text {vi }}\right)-\mathrm{H}\left(32^{\mathrm{vi}}\right) \cdots \mathrm{O}$ | $2.26(2)$ | $164(2)$ |
| $\mathrm{O}\left(4^{\text {vii }}\right)-\mathrm{H}\left(41^{\mathrm{vii}}\right) \cdots \mathrm{O}$ | $2.12(2)$ | $164(2)$ |
| $\mathrm{O}\left(4^{\text {viii }}\right)-\mathrm{H}\left(42^{\text {vii }}\right) \cdots \mathrm{O}$ | 1.88 (2) | $173(2)$ |

Symmetry codes: (i) $\frac{1}{2}-x,-\frac{1}{2}-y,-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (iii) $1-x, y, \frac{1}{2}-z$; (iv) $x+\frac{1}{2}, \frac{1}{2}-y, z+\frac{1}{2}$; (v) $1-x, y+1, \frac{1}{2}-x$; (vi) $x,-y, z+\frac{1}{2}$; (vii) $\frac{1}{2}-x, y+\frac{1}{2}, \frac{1}{2}-z$; (viii) $x, y+1, z$.
All $H$ atoms were found in difference Fourier maps and refined isotropically. All calculations were performed on a PC486 with the program SHELXL93 (Sheldrick, 1993). Graphics were produced using the program SCHAKAL92 (Keller, 1993).

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: OH1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Busing, W. R. \& Levy, H. A. (1965). J. Chem. Phys. 42, 3054-3059. Keller, E. (1993). SCHAKAL92. Fortran Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
Kotov, V. P. (1939). J. Phys. Chem. (USSR), 13, 829-834.
Olovsson, I. \& Templeton, H. D. (1960). Acta Chem. Scand. 14, 13261330.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Vannerberg, N.-G. (1959). Ark. Kemi, 14, 17-30.

Acta Cryst. (1995). C51, 1040-1042

## Mercury(II) Selenite

## Markus Koskenlinna

Technology Development Centre, PO Box 69
(Malminkatu 34), FIN-00101 Helsinki, Finland

Jussi Valkonen<br>University of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40351 Jyväskylä, Finland

(Received 6 September 1994; accepted 19 December 1994)


#### Abstract

The title structure, $\mathrm{HgSeO}_{3}$, is isomorphous with those of a series of perovskite-like $\mathrm{MSeO}_{3}$ compounds and contains comer-sharing $\mathrm{HgO}_{6}$ octahedra, connecting to form a three-dimensional network, and $\mathrm{Se}^{4+}$ ions in the cavities of the structure. The octahedron is substantially distorted with $\mathrm{Hg}-\mathrm{O}$ bond distances between 2.103 (11) and 2.641 (11) A. The geometry of the selenite group


deviates significantly from those of the selenites of the isomorphous series.

## Comment

Crystal structures of selenite compounds of mercury(II) have not been reported previously. In a study of the solubility of the system $\mathrm{HgO}-\mathrm{SeO}_{2}-\mathrm{H}_{2} \mathrm{O}$, two phases with compositions $\mathrm{HgSeO}_{3}$ and $3 \mathrm{HgSeO}_{3} \cdot \mathrm{H}_{2} \mathrm{SeO}_{3}$ were reported to exist (Gospodinov \& Barkov, 1991). The study further confirmed previous findings that $\mathrm{HgSeO}_{3}$ crystallizes in two polymorphic forms of which one is stable at 298 K and the other at 373 K . The two forms are reported to be isomorphous with corresponding polymorphs of $\mathrm{ZnSeO}_{3}$ and $\mathrm{CdSeO}_{3}$ (Markovskii \& Sapozhnikov, 1961; Gospodinov \& Bogdanov, 1983; Micka, Uchytilova \& Ebert, 1984).

Selenite forms an isomorphous series of distorted perovskite-like $M \mathrm{SeO}_{3}$ structures in space group Pnma, where $M$ is $\mathbf{M g}^{2+}, \mathbf{M n}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$, as reported by Kohn, Inoue, Horie \& Akimoto (1976). The metal in compounds of this series is octahedrally coordinated. Recently, $\mathrm{Cd}^{2+}$ was also found to form two polymorphous forms of selenite, one of which is isomorphous with the perovskite-like structures, while the other was found to be a monoclinic $\mathrm{CdSeO}_{3}$ structure (Valkonen, 1994). In addition, the crystal structure of another polymorph of $\mathrm{ZnSeO}_{3}$, in space group Pbca , has been reported, in which the Zn atom is five-coordinate (Bensch \& Gunter, 1986). It seemed interesting to explore the crystallization of $\mathrm{HgSeO}_{3}$ and compare the structure to the above different crystal forms.
$\mathrm{HgSeO}_{3}$ (prepared in this study) crystallizes in space group Pnma, isomorphous with the series of perovskitelike $\mathrm{MSeO}_{3}$ structures. The structure can be depicted as composed of $\mathrm{HgO}_{6}$ octahedra linked together at corners to form a three-dimensional network, with $\mathrm{Se}^{4+}$ ions in the cavities of this network. Alternatively, it can be considered as a structure in which the selenite group bridges six $\mathrm{Hg}^{2+}$ ions, with all selenite O atoms within bonding distance of two $\mathrm{Hg}^{2+}$ ions.

Within the $\mathrm{Hg}^{2+}$ coordination octahedron, three unequal pairs of metal-oxygen distances were found [2.103 (11), 2.593 (10) and 2.641 (11) $\AA$ ] representing a substantial tetragonal flattening of the octahedron. Tetragonal flattening, although notably less marked, was also found in isomorphous $\mathrm{ZnSeO}_{3}$, where the corresponding distances were $2.089,2.177$ and $2.223 \AA$, whereas in isomorphous $\mathrm{CdSeO}_{3}$, the octahedron about the metal ion was rather regular with corresponding distances of $2.271,2.348$ and $2.357 \AA$. In isomorphous $\mathrm{CuSeO}_{3}$, the difference between the smallest and largest metal-oxygen distance was even larger than that in the present compound ( $0.602 \AA$ ), but the octahedron was elongated, as is typical of six-coordinate copper (Kohn, Inoue, Horie \& Akimoto, 1976; Valkonen, 1994).

